Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 337: 122555, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714402

RESUMO

Revealing the spatial features and source of associated potentially toxic elements (PTEs) is crucial for the safe use of selenium (Se)-rich soils. An integrative risk assessment (GRRRA) approach based on geostatistical analysis (GA), random forest (RF), and receptor models (RMs) was first established to investigate the spatial distribution, sources, and potential ecological risks (PER) of PTEs in 982 soils from Ziyang City, a typical natural Se-rich area in China. RF combined with multiple RMs supported the source apportionment derived from the RMs and provided accurate results for source identification. Then, quantified source contributions were introduced into the risk assessment. Eighty-three percent of the samples contain Cd at a high PER level in local Se-rich soils. GA based on spatial interpolation and spatial autocorrelation showed that soil PTEs have distinct spatial characteristics, and high values are primarily distributed in this research areas. Absolute principal component score/multiple line regression (APCS/MLR) is more suitable than positive matrix factorization (PMF) for source apportionment in this study. RF combined with RMs more accurately and scientifically extracted four sources of soil PTEs: parent material (48.91%), mining (17.93%), agriculture (8.54%), and atmospheric deposition (24.63%). Monte Carlo simulation (MCS) demonstrates a 47.73% probability of a non-negligible risk (RI > 150) caused by parent material and 3.6% from industrial sources, respectively. Parent material (64.20%, RI = 229.56) and mining (16.49%, RI = 58.96) sources contribute to the highest PER of PTEs. In conclusion, the GRRRA method can comprehensively analyze the distribution and sources of soil PTEs and effectively quantify the source contribution to PER, thus providing the theoretical foundation for the secure utilization of Se-rich soils and environmental management and decision making.


Assuntos
Metais Pesados , Selênio , Poluentes do Solo , Solo , Selênio/toxicidade , Selênio/análise , Metais Pesados/análise , Monitoramento Ambiental/métodos , Algoritmo Florestas Aleatórias , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Medição de Risco/métodos , China
2.
Sci Total Environ ; 892: 164433, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37245815

RESUMO

Although the issue has been of much concern and has subsequently been controlled for years, the environmental risk of excess selenium (Se) in farmlands still has not been eliminated in Se-toxicity areas. Different types of farmland utilization can change Se behavior in soil. Thus, located field monitoring and surveys of various farmland soils in and around typical Se-toxicity areas spanning eight years were conducted in the tillage layer and deeper soils. The source of new Se contamination in farmlands was traced along the irrigation and natural waterway. This research indicated that 22 % of paddy fields increased to Se-toxicity in surface soil led by irrigation with high-Se river water. Selenate is the dominant Se species in rivers (90 %) originating from geological background areas with high Se. Both soil organic matter (SOM) and amorphous iron content played important roles in the fixation of input Se. Thus, available Se was increased by more than twofold in paddy fields. The release of residual Se and eventual bounding by organic matter is commonly observed, thus suggesting that stable soil Se availability seems sustainable for a long time. This study is the first report in China that shows how new soil Se-toxicity farmland is caused by high-Se water irrigation. This research warns that external attention should be paid to the selection of irrigation water in high-Se geological background areas to avoid new Se contamination.


Assuntos
Oryza , Selênio , Poluentes do Solo , Selênio/toxicidade , Selênio/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Solo , Ferro , China , Água
3.
Materials (Basel) ; 16(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048891

RESUMO

In this work, the Ti-20Zr-15Mo alloy in its hot-rolled state was annealed in different phase zones, and the effects of the annealing treatment on the phase composition, organization, mechanical and corrosion resistance properties of the alloy were systematically investigated. The results showed that the original ß grains of the alloy had all recrystallized to form the ß equiaxial grains when annealed at 800 °C, and the grains had been significantly refined. This allowed the alloy to reach a tensile strength of 1000 MPa, a maximum of 28% after stretching, and a significant increase in plasticity. Also, due to the single beta phase, there was no galvanic corrosion, making the alloy annealed at 800 °C have the best corrosion resistance.

4.
Front Plant Sci ; 13: 988627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186067

RESUMO

A comprehensive study in selenium (Se) biofortification of staple food is vital for the prevention of Se-deficiency-related diseases in human beings. Thus, the roles of exogenous Se species, application methods and rates, and wheat growth stages were investigated on Se accumulation in different parts of wheat plant, and on Se speciation and bioaccessibility in whole wheat and white all-purpose flours. Soil Se application at 2 mg kg-1 increased grains yield by 6% compared to control (no Se), while no significant effects on yield were observed with foliar Se treatments. Foliar and soil Se application of either selenate or selenite significantly increased the Se content in different parts of wheat, while selenate had higher bioavailability than selenite in the soil. Regardless of Se application methods, the Se content of the first node was always higher than the first internode. Selenomethionine (SeMet; 87-96%) and selenocystine (SeCys2; 4-13%) were the main Se species identified in grains of wheat. The percentage of SeMet increased by 6% in soil with applied selenite and selenate treatments at 0.5 mg kg-1 and decreased by 12% compared with soil applied selenite and selenate at 2 mg kg-1, respectively. In addition, flour processing resulted in losses of Se; the losses were 12-68% in white all-purpose flour compared with whole wheat flour. The Se bioaccessibility in whole wheat and white all-purpose flours for all Se treatments ranged from 6 to 38%. In summary, foliar application of 5 mg L-1 Se(IV) produced wheat grains that when grounds into whole wheat flour, was the most efficient strategy in producing Se-biofortified wheat. This study provides an important reference for the future development of high-quality and efficient Se-enriched wheat and wheat flour processing.

5.
Mar Drugs ; 20(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36005515

RESUMO

The unique living environment of marine microorganisms endows them with the potential to produce novel chemical compounds with various biological activities. Among them, the exopolysaccharides produced by marine microbes are an important factor for them to survive in these extreme environments. Up to now, exopolysaccharides from marine microbes, especially from extremophiles, have attracted more and more attention due to their structural complexity, biodegradability, biological activities, and biocompatibility. With the development of culture and separation methods, an increasing number of novel exopolysaccharides are being found and investigated. Here, the source, structure and biological activities of exopolysaccharides, as well as their potential applications in environmental restoration fields of the last decade are summarized, indicating the commercial potential of these versatile EPS in different areas, such as food, cosmetic, and biomedical industries, and also in environmental remediation.


Assuntos
Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia
6.
Environ Sci Pollut Res Int ; 28(45): 64475-64487, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34312758

RESUMO

Cadmium (Cd) has strong mobility and could cause toxicity to plants, and selenium (Se) can effectively detoxify Cd stress. However, differences in the detoxification effects of different species and dosages of exogenous Se on Cd and its mechanism are still unclear. In this study, a pot experiment was conducted to determine the effects of different rates of selenite and selenate application on radish growth, the uptake and translocation of Cd, and the fractions of Cd transformation in native Cd-contaminated soil. Results indicated that the decrease in radish biomass in selenate treatment was significantly greater than that in selenite treatment at a high Se application rate (2.5 mg·kg-1) (p < 0.05). In contrast to selenite treatments, the application of selenate significantly increased the translocation of Cd from radish roots to shoots (p < 0.05). Cadmium concentration and its bioaccumulation factor in radish decreased gradually with increasing selenite application rates, while these values decreased at low Se rate (1 mg·kg-1) and increased at high Se rate for selenate treatment. Different Se application rates resulted in Cd fractions distributions to change in soil. Therefore, the application of selenite treatment had a greater detoxification effect on Cd in soil than that in selenate treatment, and the double toxic effect was observed between Se and Cd in high selenate treatment (2.5 mg·kg-1). Combined with human health risk asseeement, the application of 2.5 mg·kg-1 selenite could be a good approach for detoxification in native Cd-contaminated soil used in this study.


Assuntos
Ácido Selenioso , Selênio , Cádmio , Humanos , Ácido Selênico , Selenito de Sódio , Solo
7.
Huan Jing Ke Xue ; 42(4): 2024-2030, 2021 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742837

RESUMO

This study explored the discrepancy in the detoxification effects of different exogenous selenium (Se) species in cadmium (Cd)-contaminated soil to provide a scientific basis for the control of Cd pollution in the soil and the safe production of crops. A pot experiment was conducted to compare the effects of different concentrations (0, 0.5, 1.0, and 2.5 mg·kg-1) of selenite and selenate on the growth (root length, shoot height, biomass, and photosynthetic parameters), uptake, and translocation of Cd on pak choi in Cd-contaminated soil. The results indicated that the detoxification effect of a low Se concentration (≤1.0 mg·kg-1) treatment on Cd was better than that with a high Se concentration (2.5 mg·kg-1) treatment, and the selenite treatment demonstrated a greater detoxification effect on Cd than the corresponding selenate treatment. Meanwhile, the application of low-concentration selenite and selenate both increased the SPAD value, Pn, Gs, Ci, biomass, and shoot length of the pak choi, and the 1.0 mg·kg-1 selenite treatment had the most significant (P<0.05) effect (except Ci). Nevertheless, the photosynthetic parameters of the pak choi under the high-concentration Se were significantly lower than those under the low Se concentration treatment (except Tr, P<0.05). Compared with the treatment without Se (control), the uptake of Cd in the pak choi was reduced under different Se treatments. Compared with the control, the Cd concentration in the shoots of the pak choi treated with 1.0 mg·kg-1 of selenite and selenate decreased by 40.0% and 20.5% (P<0.05), respectively. In addition, the translocation of Cd from the root to the shoot was significantly reduced under the 0.5 mg·kg-1 selenate treatment, while the high-concentration treatments of either exogenous Se promoted the translocation of Cd. Overall, applying the appropriate amount of exogenous Se could promote the photosynthesis and biomass of pak choi, and reduce the accumulation of Cd in pak choi. Therefore, the 1.0 mg·kg-1 selenite treatment is recommended for the control and safe utilization of Cd in Cd-contaminated soil.


Assuntos
Brassica , Selênio , Poluentes do Solo , Cádmio/toxicidade , Ácido Selênico , Solo , Poluentes do Solo/análise
8.
Sci Total Environ ; 770: 144664, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33513517

RESUMO

Selenium (Se) content of crops depends on the local soil Se content and/or its bioavailability, and identifying the influence factors of soil Se bioavailability is a significant basis for adopting targeted agronomic measures to improve the Se nutritional status of humans. In this study, the main wheat-producing region in Shaanxi province with similar parent material and climate conditions was selected as the study area. The total Se contents of 602 soil samples and their corresponding wheat grains were determined, and the distribution characteristics of soil Se bioavailability and its dominant influential factors were investigated. Results showed that the total Se content ranged from 0.02 mg/kg to 1.67 mg/kg (average of 0.25 ± 0.25 mg/kg) in soil, which was lower than that content in China (0.29 mg/kg). The Se content of wheat grain was 0.001-1.50 mg/kg (average of 0.11 ± 0.19 mg/kg). The distribution trend of the Se content in wheat grains was different from that of the total soil Se, but it was consistent with the distribution of soil bioavailable Se content. The bioavailable Se accounted for 11.1% of the total soil Se. This could be attributed to relatively high soil Se bioavailability of the study area belonging to alkaline soil (with a pH of approximately 8). Both redundancy analysis and path analysis revealed that soil pH and organic matter were the dominant influential factors of soil Se bioavailability in Shaanxi wheat-producing area, and the soil Se bioavailability increased with these two parameters raising. On this basis, a prediction model was established to predict the Se content in wheat grain. The results show that the various agronomic measures could be used to produce Se-enriched wheat by regulating the soil pH and the organic matter content in Se biofortification practice.


Assuntos
Selênio , Solo , Disponibilidade Biológica , China , Humanos , Selênio/análise , Triticum
9.
Sci Total Environ ; 763: 143047, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129537

RESUMO

Knowledge of the Se fractionation and the role of dissolved organic matter (DOM) in soil is the key to understanding Se mobility and its bioavailability in the soil-plant system. In this study, single extractions using phosphate-buffer (PBS), sequential extraction procedures (SEP), and diffusive gradients in thin-films (DGT) were used to measure Se bioavailability in soil supplemented with selenite and organic amendment (cow and chicken manures). Selenium fraction was isolated into DOM-Se fractions, such as hydrophilic acid-bound Se (HY-Se), fulvic acid-bound Se (FA-Se), humic acid-bound Se (HA-Se), and hydrophobic organic neutral-bound Se (HON-Se), by a rapid batch technique using XAD-8 resin (AMBERLITE XAD™, USA). Simultaneous application of either cow or chicken manure with selenite could result in the decrease of Se availability in the soil. Isolating Se available fraction into DOM-Se fractions showed that low-molecular-weight DOM-Se as an available fraction and even HY-Se as a less available fraction (OM-Se) were likely the major sources for Brassica juncea (L.) Czern. et Coss uptake in soil. Moreover, knowledge of the DOM-Se composition, especially the low-molecular-weight DOM-Se fractions, is important for assessing the bioavailability of Se in soil, the results of which are more accurate than the chemical extraction method. The high value of Pearson correlation coefficients between CDGT-Se and Se concentrations in shoots, tubers and roots of Brassica juncea (L.) Czern. et Coss in cow and chicken manures treatment were 0.95 and 0.99, 0.96 and 0,96, and 0.89 and 0.97 (p < 0,05), respectively, indicating that DGT-Se can reflect the Se uptake ability by plants and can be used to predict the bioavailability of Se when manure and selenite are simultaneously applied.


Assuntos
Selênio , Poluentes do Solo , Disponibilidade Biológica , Esterco , Ácido Selenioso , Solo , Poluentes do Solo/análise
10.
Ecotoxicol Environ Saf ; 207: 111544, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254403

RESUMO

Selenium (Se)-enriched wheat can be improved by altering Se sources and selecting wheat cultivars. Such improvement can affect subcellular distribution and speciation of Se in wheat. Thus, a pot experiment was conducted to investigate Se uptake and distribution when Se was applied as selenite or selenate at low and high rates (1 and 10 mg kg-1, respectively). Moreover, Se's impact on the grain and biomass yield of eight wheat cultivars was also investigated. The subcellular distribution and speciation of Se were also explored to elucidate Se metabolism and micro-distribution pattern in wheat. Results showed that biomass and grain yield were decreased with the application of both selenite and selenate in almost all the cultivars, regardless of the Se rate. Application high Se rate resulted in a significant (p < 0.05) decrease in grain yield and biomass compared with low rate of Se. Compared with the low rate of selenite application, the grain and the biomass yield of ZM-9023 significantly (p < 0.05) increased by about 15% for low rate of selenate application. In addition, both selenite and selenate treatment increased the uptake of Se in each part of wheat, compared with the control. Selenium was mostly accumulated in the grain and root of wheat under selenite treatment, while more Se accumulation was found in leaves and straw for selenate application. Further investigation on the subcellular distribution of Se showed that the proportion of Se in soluble fraction was significantly (p < 0.05) higher in wheat leaves than that in organelle fraction and cell walls (46%-66%). Meanwhile, Se6+ was the main species found in soluble fraction, whereas SeMet and MeSeCys were the species predominantly stored in organelle fraction. In conclusion, wheat cultivar ZM-9023 is the most Se-rich potential cultivar, and the isolation of Se in the soluble fraction plays an important role in Se tolerance and accumulation.


Assuntos
Selênio/metabolismo , Poluentes do Solo/metabolismo , Triticum/metabolismo , Antioxidantes/metabolismo , Transporte Biológico , Biomassa , Grão Comestível/metabolismo , Folhas de Planta/metabolismo , Ácido Selênico/metabolismo , Ácido Selenioso/metabolismo , Compostos de Selênio/metabolismo
11.
Int J Rheum Dis ; 22(9): 1619-1629, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31273943

RESUMO

OBJECTIVE: Fracture is a common consequence of osteoporosis and is associated with high morbidity and mortality. Recently, increasing evidence has suggested that polymorphisms in tumor necrosis factor-α (TNF-α) gene were associated with osteoporosis risk and bone mineral density (BMD), but results remain conflicting. We herein performed a meta-analysis based on evidence currently available from the literature to make a more precise estimation of these relationships. METHODS: The PubMed, EMBASE, Cochrane Library, CNKI (China National Knowledge Infrastructure) and Wan Fang databases were searched for eligible studies. Articles meeting the inclusion criteria were comprehensively reviewed and all available data were accumulated. The pooled odds ratios (ORs) or mean differences (MDs) and corresponding 95% confidence intervals (CIs) were applied to assess the strength of the relationships. RESULTS: A total of 15 studies involving 5273 subjects were included in our meta-analysis. The GG genotype of TNF-α G308A was associated with an increased risk of osteoporosis under a mutant model (GG vs GA+AA: OR = 0.63, 95% CI: 0.51-0.77, P < 0.0001, I2  = 31%). Additionally, we also observed a significant association between G308A polymorphism and BMD of lumbar spine (AA vs GG: P = 0.01, I2  = 53%). However, TNF-α T1031C, C857T and C863A polymorphisms had no obvious impacts on osteoporosis risk. CONCLUSIONS: The present meta-analysis demonstrated that TNF-α G308A polymorphism may act as a potential candidate biomarker for screening, diagnosis, and treatment of osteoporosis, which will help improve individualized therapy of osteoporosis patients in clinics.


Assuntos
Densidade Óssea/genética , Osteoporose/genética , Polimorfismo Genético , Fator de Necrose Tumoral alfa/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Frequência do Gene , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Osteoporose/diagnóstico , Osteoporose/fisiopatologia , Fenótipo , Medição de Risco , Fatores de Risco , Adulto Jovem
12.
Biol Trace Elem Res ; 180(1): 146-152, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28281223

RESUMO

This study was conducted to investigate the effects of excess dietary fluoride (F) on serum biochemical indices, egg quality, and concentrations of F in soft tissues, eggs, and serum of laying hens. Commercial laying hens (n = 576, 51 weeks of age) were randomly allotted to 6 treatments with 6 replicates of 16 birds. The basal diets contained fluorine inclusions at a level of 16 mg/kg, and graded sodium fluoride was added to the basal diet to achieve fluorine inclusions, respectively, at a level of 200, 400, 600, 800, and 1000 mg/kg in the experimental diets. Dietary F levels at 600, 800, and 1000 mg/kg decreased (P < 0.05) albumin height and yolk color, while eggshell strength and eggshell thickness significantly decreased at 800 and 1000 mg/kg, respectively, compared with the control group. Fluoride concentrations in eggshell, albumin, yolk, liver, kidney, ovary, and oviduct responded to dietary F levels positively, and F concentrations in eggshell were the highest. Fluorine concentrations in albumin and yolk increased with the feeding time at the same dietary F levels (P < 0.05). Dietary F level at 400 mg/kg increased serum calcium level and activity of glutamic oxalacetic transaminase (P < 0.05). In conclusion, dietary F levels at 600 mg/kg decreased albumin height and yolk color, while eggshell strength and eggshell thickness significantly decreased at 800 and 1000 mg/kg, respectively. F concentrations in soft tissues, albumin, yolk, and eggshell of layers had a positive correlation with dietary F levels. By disturbing Ca and phosphorus metabolism, dietary F levels affected the formation of eggshell, reducing eggshell strength and eggshell thickness.


Assuntos
Ovos , Fluoretos/efeitos adversos , Fluoretos/farmacocinética , Animais , Cálcio/sangue , Galinhas , Exposição Dietética/efeitos adversos , Casca de Ovo/efeitos dos fármacos , Feminino , Fluoretos/sangue , Flúor/análise , Qualidade dos Alimentos , Fósforo/sangue , Distribuição Tecidual
13.
J Microbiol Methods ; 95(2): 117-21, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23954478

RESUMO

Polymorphisms of mitochondrial DNA (mt-DNA) are particularly useful for monitoring specific pathogen populations like Phytophthora infestans. Basically type I and II of P. infestans mt-DNA were categorized by means of polymorphism lengths caused by an ~2 kb insertion, which can be detected via restriction enzyme digestion. In addition genome sequencing of haplotype Ib has been used as a simple Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) method to indirectly identify type I and II alterations through EcoR I restriction enzyme DNA fragment patterns of the genomic P4 area. However, with the common method, wrong mt-DNA typing occurs due to an EcoR I recognition site mutation in the P4 genomic area. Genome sequencing of the four haplotypes (Ia, Ib, IIa, and IIb) allowed us to thoroughly examine mt-DNA polymorphisms and we indentified two hypervariable regions (HVRs) named HVRi and HVRii. The HVRi length polymorphism caused by a 2 kb insertion/deletion was utilized to identify mt-DNA types I and II, while another length polymorphism in the HVRii region is caused by a variable number of tandem repeats (n = 1, 2, or 3) of a 36 bp sized DNA stretch and was further used to determine mt-DNA sub-types, which were described as R(n = 1, 2, or 3). Finally, the P. infestans mt-DNA haplotypes were re-defined as IR(1) or IIR(2) according to PCR derived HVRi and HVRii length polymorphisms. Twenty-three isolates were chosen to verify the feasibility of our new approach for identifying mt-DNA haplotypes and a total of five haplotypes (IR(1), IR(2), IR(3), IIR(2) and IIR(3)) were identified. Additionally, we found that six isolates determined as type I by our method were mistakenly identified as type II by the PCR-RFLP technique. In conclusion, we propose a simple and rapid PCR method for identification of mt-DNA haplotypes based on sequence analyses of the mitochondrial P. infestans genome.


Assuntos
DNA Mitocondrial/genética , Haplótipos , Phytophthora infestans/genética , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético , Primers do DNA/genética , Phytophthora infestans/isolamento & purificação , Doenças das Plantas/microbiologia , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Solanum tuberosum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...